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AERONAUTIC SYMBOLS

1. FUNDAMENTAL AND DERIVED UNITS

Metric English

Symbol -____

Unit Abbrevia- Unit Abbrevia-.tion . tion

Length ------ I meter ------------------ m foot (or mile) --------- t (or mi)
Time --------- t second ------------------ s second (or hour) ------ see (or hr)
Force --------- F weight of 1 kilogram ----- kg weight of 1 pound --- lb

Power ------- P horsepower (metric) -------------- horsepower ---------- hpv kilometers per hour ------ kph miles per hour -------- mphSpeed ------- V meters per second ------- mps feet per second ------- fps

2. GENERAL SYMBOLS

W Weight=mg P Kinematic viscosity
g Standard acceleration of gravity= 9.80665 m/sl p Density (mass per unit Volume)

or 32.1740 ft/sec2  Standard density of dry air, 0.12497 kg-m--s at 15'
W and 760 mm; or 0.002378 lb- t "4 see'm Mass=g Specific weight of "standard" air, 1.2255 kg/m

I. Moment of inertia=m . (Indicate axis of 0.07651 lb/cu ft r
radius of gyration k by proper subscript.)

Coefficient of viscosity
3. AERODYNAMIC SYMBOLS

S Area i. Angle of setting of wings (relative to thrust 1i
S Area of wing 41 Angle of stabilizer setting (relative to thr
G Gap line)
b Span Q Resultant moment
c Chord fl Resultant angular velocity

* Aspect ratio, R Reynolds number, p- where I is a linear dim

V True air speed -. sion (e.g., for an airfoil of 1.0 ft chord, 100 m
De standard pressure at 15' C; the correspondq Dynamic pressure, yTV7"

Reynolds number is 935,400; or for an air
Lift, absolute coefficient " of 1.0 m chord, 100 mps, the correspond

L i b cReynolds number is 6,865,000)
D Angle of attack

D Drag, absolute coefficientCG= D Angle of atta
PIS E Angle of downwash

DD Profile drag, absolute coefficient C D Angle of attack, infinite aspect ratio
"' Angle of attack, induced

Di Induced drag, absolute coefficient C D aa Angle of attack, absolute (measured from ze
n CD q8lift position)

D, Parasite drag, absolute coefficient 01,-1 Flight-path angle

C Cross-wind force, absolute coefficient Cc-
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REPORT No. 872

THEORETICAL STUDY OF AIR FORCES ON AN OSCILLATING OR STEADY THIN WING
IN A SUPERSONIC MAIN STREAM

By 1. E. GARICK and S. I. 11UBINOW

SUMMARY of the two-dimensional wave equation and described by

A theoretical study, based on the linearized equations of him as "acoustic oscillator method" (Wright Brothers
motion for small disturbances, is made of the air forces on MIemorial lecture, Dec. 17, 1946).

wings of general plan forms inoeing forwvard at a constant Tie corresponding unsteady or nonstationary problem for

supersonic speed. The boundary problem is set up for both two-dimensional flow (infinite aspect ratio) may be con-

the harmonically oscillating and the steady conditions. Two sidered to be solved. In this connection there may be
types of boundary conditions are distinguished, which are mentioned the work of Possio, Von Borbely, Temple and

designated "purely supersonic" and "mixed supersonic." The Jahn, and the present authors (references 10 to 13). Of
purely supersonic case invol'es independence of action of the interest also are two wartime German papers by Schwarz

upper and lower surfaces of the airfoil and the present analysis and Hbnl (references 14 and 15). The corresponding steady
is mainly concerned with this case. A discussion is first plane case to which the nonstationary problem may be

given of the fundamental or elementary solution corresponding reduced is that treated by Ackeret.
to a moving source. The solutions for the velocity potential Results for the nonstationary or oscillating case are of
are then synthesized by means of integration of the fundamental great interest in the investigation of aircraft instability.
solution for the moving source. The method is illustrated by The two-dimenlsional results have been applied to a study of
applications to a number of examples for both the steady and flutter at supersonic speeds in references 12 and 13. Of
the oscillating cases and for rarious plan forms, including more direct interest for this application are the three-
swept wings and rectangular and triangular plan forms. dimensional results, especially for wings of swept plan form.
The special results of a number of authors are shown to be The methiod used in tire present study is to build up solu-
included in the analysis. ' - , , / tions of the equation satisfied by the velocity potential by

superposition of the fundamental wave-potential solution
INTRODUCTION for a spherical source. These solutions are also made to

This paper constitutes a theoretical study of tire aero- satisfy certain required boundary conditions on tire airfoil
dynamic forces on an oscillating or steady wing of finite surface. In the two-dimensional supersonic ronstationary
span moving forward at a uniform supersonic speed. The case, which appears herein as a special limiting case, it can
treatment is based on the linearized theory obtained by be proved tiat the procedure leads to a solution that is tire
considering only small disturbances in an ideal fluid. The unique solution of the given boundary problem. (For tire
wing is therefore considered to be a nearly flat thin surface problem of subsonic flow past a thin wing, reference may be
at a small angle of attack and the flow is considered non- made to the general treatment and method of Ktissner
viscous and free of strong shocks. The theory in this case is (reference 16) which also involves solutions of the wave
equivalent to finding certain solutions of the wave equation in equation.)
three dimensions with respect to a moving coordinate system. Some qalitative features of the nature of the boundary

For the case of steady motion there exist a number of problem may be mentioned here. Further remarks may be
interesting solutions and methods. Among these may be found in reference 17 and in Von Krrmnin's Wright Brothers
mentioned the Von Krirmfin and Moore linearized treat- Memorial lecture. In the case of subsonic flow past an air-
rnent of slender bodies of revolution (reference 1), the Prandtl foil the whole field is influenced by the body. The concept
acceleration-potential miethod employed by Schlichting of circulation has proved to be very useful and the Kutta
(references 2 and 3), the Busemann method of "linearized condition has been used to specify tire circulation by requir-
conical flows" (reference 4), studies of Jones, Puckett, ing smooth flow leaving the trailing edge. Thus, a deflected
Stewart, Brown, and Gurevich (references 5 to 9); and a aileron in subsonic flow influences tire flow pattern over tire
method of Von K~rmdn employing Fourier integral solutions whole wing even more importantly than over the aileron itself.

821982-49
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In the case of supersonic flow tile influence of tile body is 0, '1 , limits lefinel in equation (10)

limited to only certain parts of the field of flow and generally 0 variable used instead of " defined by

the wake does not influence the upstream flow. The bound- preceding equation (15a)

ary problem for a three-dimensional surface moving at a p pressure
supersonic speed can be classified into two types referred to Po reference pressure

herein as "purely supersonic" and "mixed supersonic." p (tensity
The definition of these terms is given in the analysis accord- a angle of attack

ing to the parts of the field influenced by the airfoil, the a time derivative of a

purely supersonic case involving independence of action of co angular frequency
the top and bottom surfaces and 110 reflecting surfaces in the w(x, z, t) vertical velocity factored in equation (I
field. Thus, in the purely supersonic case, a deflection of space function l1(x,z) and time funct

the aileron would produce only a local effect near the aileron; A angle of sweep

in the ,nixed supersonic case, it may have a decided influence h vertical displacement
on the l)art of the wing adjacent to the aileron or on other i time derivative of h

parts of the wing. For a given wing both types of problems ANALYSIS
may be involve(l. WAVE EQUATION AND SOURCE SOLUTIONS

The treatment used for the purely supersonic cases, involv-
ing source and sink distributions to account for the action In the linearized theory based on small disturbal
of the body, is believed to be exact within the framework of equation satisfied by the velocity potential for the

the linearized theory. The upper and lower surfaces of the gation of sound waves of small amplitude is the wave e,

airfoil are regarded as acting independently, each surface 1 610 o )2€ __. 0

being "unaware" of the presence of the other. The treat- c( )X- +--i-- -Z2
ment is thus analogous to that of sound in a moving medium
generated by tile motion of pistons imbedded in an infinite The fluid rfiedium is considered at rest at infinity.
plane. This flow picture is obviously incomplete in the In the treatment of linear partial differential equati,
mixed case and more complicated distributions (doublets) so-called elementary or fundamental solution is o

are also required. For some purposes, however, the simpler importance since general solutions can be built up
treatment may still be used in conjunction with appropriate tributions of elementary solutions. From a physical I
correction factors. Also, for steady flow past a symmetrical view the elementary solution may correspond to a sou
airfoil at zero lift, the simpler treatment can be employed discussion of the nature of elementary solutions for hyl
for study of the wave drag. differential equations of a general type has been gi

The object of the present paper is to develop the expres- Hadamard (reference 18), who makes the cardinal sta
sion for the velocity potential in the purely supersonic case, that "every result of the theory can be and has to be d
based on the elementary solution for the sound source from the consideration of the elementary solution on
moving uniformly at a supersonic speed, and to indicate A fundamental solution of equation (1) from which

its application by a number of special examples. solutions may be formed is that of a source of soun

in the medium
SYMBOLS

disturbance-velocity potential 00=r, --

x', y', z' rectangular coordinates for fixed system where
x, y, z rectangular coordinates attached to source mov- r'- (y,_n') 2

+ (z,- .) 2

ing in negative x-direction; also represents
field point being influenced In equation (2) the fixed source is located at the

', ," ~ rectangular coordinates used to represent space (, ?', ), the strength of the source is A( ', n',

coordinates in fixed system and the minus sign indicates that the spherical wa-
t, 77, " rectangular coordinates used to represent space diverging from the center of tile disturbance.

location at source distribution A(Q, 7, ) Another closely related solution of equation (1) is

t, T, t' time a fixed point source for which the spherical waves ai
v velocity of main stream verging onto the source

c velocity of sound

M Maleh number (v/c) A t'

r distance defined by equation (8) 00=rf c+)

71, r 2  time function defined in equation (7a)

0= M 2 _ The wave potential in equation (2) is often desi:.

g function defining airfoil surface (yg(x, z, t)) "retarded" and that in equation (3), "advanced."
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It is intended to consider thin lifting surfaces of small tion (5) obtained by multiplying the right-hand side by the

urvit tIure viiich are moving forward at a constant supersonic constant 1i/--M2, or

welocitv r and which may be performing small oscillations

normal to tHie direction of r. The direction of v will be that x'

of the negative x-axis and the surface will be replaced by a t-M2

distribution of moving sources in the xz-plane (fig. 1). y

y (5a)

t'=t+ c7 i.1 jJ

The particular solution of equation (4) that corresponds

to a moving source will be seen in the following discussionz s to be analogous to a solution of equation (1) given by the
sum of potentials in equations (2) and (3), nanMely, to

FIGURE I.-ITlie coordinate system used. Thin lifting surface in xz-plane moving at a
constant supersonic velocity v lthe negative x-directin. 

c, )± t

Consider a source moving in the negative x-direction with

uniform velocity v and a rectangular coordinate system The desired solution of equation (4) corresponding to equa-

attached to the moving source. If the new coordinates are tion (6) is obtained with the aid of the substitutions (Sa) as

lesignatedl by x, y, z, t, where x=x'+vt', y=y', z=z', t=t',
the equation satisfied by the potential is 00= P. - - M 2 - +  (7)

1 c)(6tv +2 _)20,+ 2 where

o r0 t V Y X ) 0 = ) X j y C Z2(4 r = 1 ('- - (M-  1) 2 (y - 7) 2+ ( z -Z ' I 8

or ___

1 010 _2v C)24, (V2_ 1) Yo4 02, )2,,-

c2 
at

2 
+ C - 2 - ) 2 -6y2--Z (The term _I-A12 in equations (5a) causes no difficulty

since only the squares of the space coordinates are needed.)

This equation is satisfied by the potential of sources of sound This solution for , may ie expressed in the form

in motion through the mledium with uniform velocity v in it

the negative x-direction. It is also the equation satisfied by 0=- [J( t -2)+f(t-rt)] (7a)

the disturbance velocity potential for a fixed body creating where
small perturbations front aii oncoming main stream of 1 x- r
velocity z in the x-direction. A brief derivation from hydro- + :v 1-

dynamical principles is given in appendix A.

It is known from the classical study of the wave equation I1 x-- r

(reference 16) and can be verified by direct substitution that r'= C 11,1- t c

a solution of equation (1) is transformed to a solution of
equation (4) by means of the following substitutions, corre- and where r is defined as in equation (8). The constant

sponding to it combination of the Lorentz transformation At,(t,) could of course have been included in the functional

and a Galilean transformation: symbol f but has been separated for convenience. It may
be considered to represent the space variation of the source

/ strength as distinguished from the time variation of strength.
VIl I3 JFor a moving source of constant strength the time function

may be considered equal to unity and the potential (xpressed

IIMYM(5) as (reference 2):

It will be recognized that the solution, equation (7a), is

where 3f, the Mach number of the main flow, is v/c. valid in a conical region, tte so-called "Mach cone," opening

For the purpose of studying the supersonic case (M>I), aft of the moving source. Outside of this conical region,

it is more convenient to employ modifications of transforma- defined by the equation r=O, tile flow is undisturbed.
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The result expressed by equation (7) may be considered
physically from two points of view. In one, as considered
by Prandtl (reference 2), a source of variable strength
moving along a certain path is replaced by a continuous cr
succession of fixed source pulses distributed along its path
acting consecutively one after the other. Each pulse, con- xzT+r 2)- y,z,)
sidered fixed in an absolute coordinate system, emits a
spherical wave traveling at sound speed and the coordinates V(,_7rT+.) (f,/T+s¢) - - r -

of the center of the spherical surface are +vt, 17, . The
radius vector R of a point (x, y, z) with respect to this
center is

Rr= '[x- (a vt)1+ (y~n)Y± (z-t)2

The time at which the spherical wave passes the point (x, y, z)
1s FIGURE 3.-Influence of single spherical wave pulse. Spherical wave originating at points

t R (t, 1, r) at time T influences point (x, y, z) fixed relative to (t, n, ') and moving at a con-

e stant supersonic speed, at times rj and 72 later.

Eliminating R between the preceding two relations results in correspond to these two effects. Tile factor 2 appearing in
the potential for a constant source moving at a supersonic

cdt 2 - (x--t) 2 - (y-,B2 - (z- )h=0 speed also has its origin in this physical fact, in contrast to
that for a source moving at a subsonic speed, where the field

The roots of this quadratic equation in t are precisely the point penetrates the wave front but never emerges and where
quantities rT and T2 defined in equation (7a); that is, the the corresponding factor is unity. The two-dimensional
field point (x, y, z) is influenced at time t by two waves which supersonic case involves cylindrical waves and the potential
originated at times r2 and rl earlier. It is of interest to of the point (x, y) is continuously changing from the
observe that, in the supersonic flow, both roots are real and time the point enters to the time it emerges from the
positive and have physical significance; whereas, in the wave (reference 13). Observe the interesting geometrical
subsonic flow, only one root is positive and of physical sig- property of r (equation (8)); namely 2r is the difference of
nificance. In the supersonic case the field of influence of a the radii of the spherical wave at time r2 and at time r1 , that
source is the particular Mach cone with vertex at the source, is, r= 2C (r 2-rT). (Observe also that the potential which for-
and through each point in this region at instant t, there pass
two spherical surfaces representing the waves originating at really appears in equation (6) as the sum of potentials, half-
times r, and r2 earlier (fig. 2). advanced and half-retarded, transforms in the moving

coordinates to a sum of retarded potentials in which the
original retarded part is associated with the diverging

-r spherical concave wave from which the point is emerging
and the original advanced part is associated with a diverging
convex wave into which the point is penetrating.) Recent

\ C- r "rZ \papers of interest in connection with moving acoustical
sources are references 19 and 20.

tSURFACE DISTRIBUTION OF SOURCES

Sources and sinks of the type 0 ,,will now be distributed to
represent the upper and lower surfaces of a thin airfoil.
The procedure to be followed is that used in the two-
dimensional case (references 10 to 13) where the upper and

FIGURE 2.-Field of influence of spherical source moving at a constant supersonic velocity, lower surfaces are considered separately. Also the total effect
Point (x, U, z) is affected at time t by two pulses originating at times ri and r2 earlier. may be separated into an effect of the mean-camber surface

and an additive effect due to thickness alone. In most of
From the other point of view of the result (equation (7)), the applications, unless stated to the contrary, the mean-

a single diverging spherical wave-pulse is considered. Let camber surface is considered.
this wave originate at the point ( , 77, -) at a time T (fig. 3) Let a continuous distribution of sources be given over the
and consider its effect at a point (x, y, z) (within the Mach mean-camber surface. The airfoil is considered so thin and
cone whose vertex is at point (Q, 77, )) moving vith a velocity flat that the source distribution may be treated in the
greater than that of sound. Clearly at a later time T+TI xz-plane (fig. 1). The airfoil surface may be considered
the moving point penetrates the wave front and at a still moving at a constant speed v in the negative. x-direction (or
later time T+T 2 it emerges from the wave front. The fixed in a stream moving in the x-direction). The effect at
potential at point (x, y, z) changes only on entering and on a point (x, y, z) at, time t of a distribution of sources of posi-
leaving the wave front and the two terms in equation (7) tion magnitude A( , 0, f) is given by an appropriate
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ill egililn 01,(1' it region of th Il' -lil of tltc Iorii

o(x, y, z, t) =ffo d d (9)

wvhere 0() itre(seits t ie( flillil joll (riven1 it equaition (7) wvithl

The )1 total eet it, the p~oilnt (x, ?, _-) is lt'e si of tite
effelts of iil (ldist urhaxtees haini'lig th ei r origin witin tit(,li

Mac cl e wvit IlVeltex lit poilt (J., Y, Z) a iie opening iii thie
uplst reiami dijretin. TI i s coijcail region need not extend1(
jinto tIie( iuindistulrbetd part of thle flow; thiat is, it ied IIo t
exten be ,( i'vondtite miost, forward surface enivelop~e of tile
M Iach c.ones of influence of the body. Thiereti re essenially

twxxo tyvpes oif ilolid itt at coniidt ions thiat need 10 he' (i s-
i nliislied, decsignated b y the t erllis "'puirely sul )(rsoiic'

iand "mllixedl sup('rsoilic.'' A point of tlt(, boundteary be(lonlgs
to a piirely suipersoic clise if the upstreamll facing Ai aeli cone \/ \N
contlajins, jin tleC part of til' XZ-i)Iaile Itot 'onisidleredc otccupiedi /

by tile, body, no disturbed flid having a comfponenIt nortmal
to thjs surface. Otherwise, tile point belongs to the mnixedl
suipersoic case. A sufficient (hblt ilot ne(ce'ssary) c'riterioi
for the( piirtely supersonicetase is tilat the(, componeint of the/

main stream normal to any ed(ge 01- contour of the plan formnI
in tile xZ-plane (contained within the upistre'am facing Mach
cone of the given point) shall he supersonic. There is no //

(lown1lasll all('ad of tile blody, IIo hle~(s are ill tile body, 110 FiGURE 4.-iinstraions of plan forms with "mixed supersonic" regions t(unshaded) and
spilling of fluid occurs around edtges, anld 110 refle'ctilng sulrface's "pueiy supersonie" regions (shaded). Mach lines are shown dashed.

are in tile flow field. in this case tile tipper and lower stir-
faces (of tile airfoil are colnsidlered to act independently of purely supersonic case and to introtluce appropriate correc-

eahothe'r; a disturbance c'reated on one sie does 11ot affect. tion factors.
the oplposite side. The flwcnbe considered to arise froii Tile rc'gion of integration in equation (9) is the part of thle
the appropriate movemeint of small pistons acting tit tite b)ody (in tile s-planc) t'tt out by the upstream. opening
regulating or geineratinlg surface. This c'ond~itin is in con- Macih cone with vertex at point (x, y, z). This region in
trast to that of the mixed supersontic case, for wvhijch. the general depends on the plan form of the body as well as on
i'trect of tih' disturbance spills over the edges ox' sides, and tile point (x, y, z). With the understanding that tile leading
a1 disttirbedt fluiid regiont (downwasil) may exist ah(ead of tihe point of the body is at =t), tile integration may he written
hotly. Thus, pin~ts of a triangular surface, mloving ver'te'x('
foremost and completely otutside of tih' Macit cone itssociatedi ~(G, Y,Zt) j' JJ ood d 10
withl tile vertex. be(long to the purlriy suipersonlic case. If where 0 '

tile tiriangular surface is insitde tile Mach cone atssociiat(ed
with the vertex. thle points bielong to the tmixedt stipersonic
tase. Of course, for a given surface, both cases may be 2Z

involved. A few examples are shlown in figure 4.
In the purely supersonic case the circulation conceplt plays ~VA 2  ~

110 pairticuilar role and the drag associated with lift or thick- lXYM1
ness may properly be denoted as wave drag. lIt thinxeed
case thle flow retains subsonic feattires antite' edrag associated rile limits of integration l and 2 in equation (10) may be
with tile lift is sometimes denoted as induced drag. recognized as the distances from tile -ixis to the near and

Although thle treatment given for tite purely stupersonic far sides, re'spectively, of tile hyperbola defined by tile inter-
(illse is beilievetd exact within the limnitations of tite lineairized section of the cone r=0 and tile plane 71=0. Thus, froni
theory, ait exact treatmlenlt of the mixed sulper'sonic citse is equation (8), wvith ?)=1), anti 2 are recognized as the roots
not avNailable. These p~roblems involve greater diffictulties of the equation
in thle ilotntlarv conditions, for tite flow to a certa in extent
acqtuires features of at subsonic flow in that thle fluid field (r),_ 0= ~ 1 (~-) (1
"senses" the approach of the hotly. Thus, in ce'rtain cases,f2I

conditions at the leading edge, at the( tirailing edge', itnl inl thle The limit , in equation (it)) re'presents thet -coordinatc' of
wvake multst be specially taken itto account. For- sotne ptw- the ve'rtex of tile htype'rbola aned is defined by the', coiteition
poses aitd iii certain pr'oblemns, hlowever, it may he useful to 1= 2, that is, by o=t). Tite point %h, .Z) is the( farthermost
treat tile mixed supersonlic case in the same iiaitner as tite tdownstreamn point wihich caii affect tle point (x, y, Z).
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BOUNDARY CONDITION where, for y=O (see equations (7a), (10), and (11)),

The strength of the (listribut ion of singularities in equa- i(-) ( )( )

tion (10) will now be determined by the boundary condition ___ (X__c__

of tangential flow along the airfoil surface. The boundary

condition may be expressed as I ( ) (2

= '?'(X, z, t)

()g by=eV -+- t (12) 2=Z+O

where the airfoil shape is defined by y=g(x, z, t) and where -o= _

the two terms represent the normal velocity induced by the
airfoil shape and by its own proper motion. It is shown in Al 

-

appendix B and canl also tbe made clear by physical reasoning and where it is understood that lV( Q') =0 at any p
that as y approaches zero from the positive side (y--+0) the bo(ly or where the integrand is not real.

Equation (15) may he put into a simpler form by
-- 2r(M 2- 1)A(x, 0, z)f(t) tution of a new variable 0 instead of ', which is oh

or, briefly, from the relation (see appendix B)

A1x w(X Z t) (13) 2 = ( 2- I) cos'+2A(r, z)(t) 2r(iM 2- 1) Z, , or

=='o cos 0+z
As y approaches zero in the negative half plane, atn equal

and opposite result is obtained. Equal source distributions The surface potential (equation (15)) may then be wril
on the upper and lower surfaces therefore result in a discon- 1 f
tinuous vertical-velocity distribution near the plane y= 0  ¢(x, z, t) 2 f [.,, (0)[W(t- V)(t-r 2 )]
and may be used to represent symmetrical thickness distri- 2i'/, 0  

W t
butions. The source distribution representing a thin body where
with arbitrary thickness distribution is in general unequal
on the two surfaces. The effect of thickness is discussed in , (M--sin 0)
a separate section. A representation of the mean-camber

surface alone may be obtained by placing equal and opposite X- s
sources on the under surface in proximity to the sources on T2 cO - (21sin O)

the tipper surface. The potential o is to be understood in
the subsequent analysis to be prefixed by a ± sign, plus for 0=cos-1 -
the upper surface and minus for the lower surface. The
vertical velocity will in general be measured positive upward. Equation (15) represents the central result of the ai

It is convenient to express the vertical velocity in equa- and within the limitations already discussed may be Btion (13) in separated formanwiinteimttosardyicuedayea
to wings of any plan form in steady motion or perfo

w(x,z,t) = 11'(x,z)w(t) (14) small oscillations. In the stationary or steady case,,

where not depend on time and the function w(t) is to be rel
V(x,z)=-2r(M--1)A(x,z) by unity. Then, in equation (15), w(t-rt) +w(t-r 2 .!

be replaced by 2.
wt) =J(t) PRESSURE RELATIONS

SURFACE POTENTIAL For the sake of reference, relations for the pressur

The total potential for y=O may now be expressed by the lift and drag forces are given here. The distur
means of equations (10) and (14) as pressure (local static pressure minus the pressure i

undisturbed stream) may be written as

= XZ0 o dd
P-11 (h)p=-P -

4"(r ,%J -) (-- ) + (t1) d- d (15) = - + \ o
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'I'le pressuire difrlteiIce (plosit ive if actingr downwardl) at atiy The integration with respect to 0 miav lbe rcadilv performed
point (.n, Z) maly he expressed as with the aid of the relation

AP=jPPL 1 f cos (X sin O)do=J0 (X)

wherIe the subhscripts U and L refer to the uipper and lower Finally
surfaces. F'or tile jRlean-c-ainler surface Ihr= pu and O(Xt)0-_e-j' Xl)(, ~ ~ (0

P (c)(A '60)here 

(0

The total forces oil the airfoil in the y-dircction land

n-direction te given hy This result for the velocity plotenltial is identical with equ~a-
tion (11) of reference 1.3 and is used therein as a basis for

Y=Lift=ffp dx (12 calculation of tile nonstationary two-dinensional case.
X= Drg f 1) y dzIn the steadly case, w attd I(% x) = 1. The expression

X=Dra~ -fp (h (12for the velocity potential is

where tile inltegration is to he taken over the complete airfoil
surface. Expressed as itntegrationls over the plan form f(x I I4( ) di (22)

Y f(L - 1)) dx dz where l'(Q)=v d.This formula or the pressure relation
~"C~ dy dy(18) vd

JJLIU ,( dx) u-VL(dX) ldx dz P=-P ( v dy

It is often con venient to seplarate the slope terms as follows: applied to both tile upper and lower surfaces of the airfoil

(dy) ~ leads to all the results of the Ackeret theory.

WING OF INFINITE SPAN WITH ANGLE OF SWEEP

d x~ r Consider an inlfinlite wing with anle of sweep A (fig. 5), and
y)L assume that all sections in thle flight direction arc identical

where a is tile conlventionail direction of tile mnain stream with in shlape and that the wing is unidergoing harmonic motion.
respect to at reference chord, and au and or, are the local slopes In genieral, thle vertical velocity w can be written in the com-
of tile airfoil sulrfaces measulredl with respect to the reference plex formn
chord anld positive in the samne senlse as a. w(X, z, t) =W(X, z)el-'

APPLICATIONS
WING OF INFINITE SPAN AND ZERO SWEEPA

For tile first application of equation (15) the resu~lts for
hoth the oscillating and steadly two-dhimensionlal case will he f=3
derived. For tile harmonically oscillating wving hlaving
idlentical motion ill every chiorwvi se section, tile vertical SIP
velocity (-all be written in the complex form

w(X, t) co A-x~~' 8.0

=efaf ( 2 ji2 Cos W2T

Equation (15a) blecomnes

(AX t) f

where0= /Tp _ (19) FIGURE 1.-sketch for wing of infinite span wit h an gle of sweep showing region or
where~3 = - 1.inategration (shaded).
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If each section normal to the leading edge is performing tim The local pressure difference is given by
same motion, the form of IV(r, z) is l(x-z tan A). If the
wing is assined to perform pure vertical motion alone, then p 2v 2a _ cot A

IV(x, z) is a constant. If the wing is assumed to rotate about t 2  A--I
an axis .r=(Constant, thei ll(.r, z) is of the form IIV~r). This equation reduces, for A=t, to the Aclkeret resti

The potential is of the form (fig. 5)

2pv'a
0(r, Z, F I 1 Fd J F do d (23) o

where Let the index i refer to quantities measured noria
F( , 0, t) =+- 1V(}, '(0)) [ leading edge. Then

and where ac=a sec A
- o A v,.=v cos A

-l cot''Io A
X+ z2 M, M cos A

4 1+ cot A and

/ cot A-z p 2pv. 2a,
6,=cosi ( c -- z0) M2_ f

The values of the limits a and 4 are found by solving for i a result similar in form to the expression for p0 and

in the relations ,= cot A and 2= cot A which represent stated by lBuseiann (reference 17) in 1935. (S,

the intersections of the Mach lines through x with the lead- reference 6')
ing edge. The limit 0=01 corresponds to -= cot A, the The harmonically oscillating case with 11(x, z) a-

leading-edge line. to be of the form JV(x-z tan A) leads in a similar mal
When IT'(, z) is a constant or a function of / only, the a result analogous to equation (20).

velocity potential can be expressed as
RECTANGULAR WING OF FINITE SPAN (ZERO SWEEP)

ff)d Consider harmonically oscillating rectangular¢(z, z, t) --e ' W( )I(a, xd -£W(I,( , , a ,]Cosie

(24) finite span as in figure 6. Region I is described as

where I(Q, x) is as defined previously and supersonic and region II as mixed supersonic. The
the aspect ratio and the stream Mach number, the rel

I __- __ , x- a d smaller the region II becomes.
1c o (25) The potential for region I for identical motion

chordwise section is exactly that given for the infinit
Observe that the integral involved in equation (25) for I, in equation (20); however, more general types of

reduces to the Bessel function of zero order when O,=7r as involving spanwise variation may also be treated
in equation (19). This interesting integral may therefore example, let the wing perform harmonic oscillati

be called an "incomplete" Bessel function of zero order, vertical bending and in torsion about a spanwise axi

Systematic investigation of its properties would appear to in certain prescribed spanwise modes. Then, with
be desirable. h used to describe angle of attack and vertical )

For the infinite swept wing in the steady case the frequency (fig. 7),
w may be made equal to zero in equation (23). Consider a= zai(t)
as a simple example the case of a thin wing at a small constant h h( i

dy hjzh(
angle of attack a. that is, d- =-a. Let the angle of sweep

be less than the complement of the Mach angle, that is, where a1 (z) and h,(z) represent spanwise modes and

0 cot A>1. (Otherwise the case involves the mixed-

supersonic-ltow conditions.) From equation (24) with w=O, a2 (t) = aoe

I, X)=, and I(E, x, z)= 0 , h2(t)=hoelw
7r

(xfz) ['cosi,( _cot A- ~ and a 0 and ht0 ir constant complex aiplitudes. The "

0 L E= 0)-- dI velocity (w ineasured positive upward, h positive
[ fU5 7r. E. £ ward) may be expressed as

X cot A-z
=va-.,t - (26),

02 cot 2 A-1 t2)w(X. Z, t) -[Ia+li+ (r-)&]
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With the use of equations (15a), these potentials may be
expressed as

S/ jc e-j al(a) os si 0 dod
//\

/\o- 0 O
/ IL, I I I

n, e'Oj k(~- ( ) si (1

x 'irp AlJdoo

where

~ j=~ ~i 1c(AI 2-1)
and, expressed as at function of 0,

(x, z) a(0)=a,(Z+ o Cos 0)

hl( )=h,(z+ o cos 0)

If the modal functions in equations (31) are a,=h, I, the

potential corresponds to that given by equation (20) for the
two-dimensional case. (See also equation (14) of reference 13.)
It is of interest to consider modal functions for a, and

'- h, of the type (j/s)' where s is the semispan. For modal
/ 7 2 ' i functions of this form the typical integral involved in

- (x , equations (31) may be expressed as

,, f F (z + cos 0) co, (qin ) do (32)

FIGURE 6.-Sketch for rectangular wing.FiGUE BSkech or rctagulr wng.With tihe substitution of r-0 for 0, Fn may be written as

F.=f( +¢osin O) cos( Cos ) do+

x The further reduction of F,, is made with the aid of the fol-

lowing relation (reference 21):

/J(X) Cos (X cos 0) sin.2 Odo
r k+ )r()

For example, the case n=0 corresponds to constant modes
and yields for the potential the result already given by

FotcRE 7.-Sketch for oscillating rctangular wing (h Is positive downward, equation (20). The case n= 1 corresponds to linear modes
a is positive clockwise). and the function Ft becomes

Let thl otential (equation (15)) be separated into theF
fom =0+0+0 (30)

where the various O's are associated with the correspondinlg This relation utilized in the equation for the potential yields

variables in equation (29). a result that is the two-dimensional-case rcsult multiplied
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by the factor z/s. The case n=2 corresponds to parabolic It may be observed that p is constant along rays fr
modes and the function F2 becomes tip -- = Constant. Along the ray corresponding

F2=r 2 Jo + (x- )J 1  Mach line from the tip, s-z I and p takes on the e

value p. Along the ray corresponding to the tip z=
When lF2 is used in equations (31), the J, term yields aln of this value is obtained. This edge condition is ph
integral of the type given by equation (20). With the use incorrect since the assumption of the independence

of the relation J,(X) =-J'(X), the J, term also yields an two surfaces of the airfoil is not correct near the tip.
integral of the same form. This type of reduction to the This particular problem has been treated by Bus
form of equation (20) may be made in general for any integral (reference 4) by his method of conical or perspectiv
index n by means of the recurrence formulas for Bessel func- metry. The condition along the ray corresponding
tions, and thus use may be made of the numerical procedures tip is p=0 and Busemann's result for region II is
used for equation (30). (See reference 13.)

It may be of interest to treat the potential for the mixed 2pv a I cos")
supersonic region II (fig. 6) as though it were part of a purely 7- x

supersonic region. The equations corresponding to equa- The total lift over region II is one-half of that of at
tions (31) are

a Z (area of region 1. A comparison of this result and
O- -,J e - t J a1(i) cos sin 0) dO d- tions (36) is shown in figure 8. This comparison gi

7 P I , Uindication of the errors involved in the assumption o
Va2  , C s ill d (33) pendence of the two surfaces near the rectangular t

1)- 01 conversely, it gives an indication of the appropriate
tion factors required to allow for the tip effect. It a

and similar equations for 01i and €,. The limit 2 is found that equatidns (36) overestimate the lift over all of re.
as the value of for which 2=8 or by a factor 1-2 or by approximately 36 percent. Ac

r
Z2 =X-(

s - Z )  equations (36) apply to the edge of a rectangulai

The limit 0=0 corresponds to =32 and the limit 0=02 adjacent to a straight surface barrier at zero angle of

corresponds to -=s or, from equation (15a), THICKNESS DISTRIBUTION

S--Z \ It has already been remarked that the treatmet
--cos- ) ployed in the analysis mainly for the mean-camber .

can also be applied to obtain the effect of thickne.s
The last term in equation (33) leads to integrals of the equation (15) the vertical velocity W, ') may be sp
"incomplete" Bessel function type as mentioned for the case for both the upper and the lower surface.
of the infinite wing with angle of sweep. As an example, consider a plan form such as that sh(

The foregoing results for the oscillating rectangular wing figure 9 in steady supersonic flow. Let the airfoil
will now be specialized to the steady case (c=0, q=0, shape, for convenience chosen symnetrical and indep
a,(')=1, a 2()=a, the constant angle of attack). Then, of span, be defined in the center section by y=g(x) (;
from equations (31), the velocity potential for region I, is any other section by y=g(x-z tan A)). Then, for the

surface,
f -x (34) I(,VZ) = ,a+ 1g'

For region II, from equation (33), and, for the lower surface,

Va Va (' 8-
x- cos - 1 S 0) dt (35)

where g' is the derivative of g with respect to its argum,

The actual integration in equation (35) may be easily per- The velocity potentials in the various regions in fi
formed but is not required for the purpose of obtaining the are of the form
local pressure.

The local-pressure difference is directly obtained for €=J F d- F dod
regions I and II from equations (34) and (35) as F d F d

2 pva [ I ( (36) =01-Q 'f F do d+ f' F do d )

Pill -# cs''' 0] ¢-(f ,f F d O d f ~a f F d O t
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40__ - cot A; and s is the value of for the leading edge of

the tip. Then 6~o- o -

.5 _ -0,=cos 'i ( cot A - z

.5-0 2 =coS_' S -

P 11 EFU/b~~s (36) _ __ - -

P0

1-+A

_ 6 1-i+ A

I 6=~X- 8Z)0

5=s tan A

o0. .4 /6 . A=O cot A

FIGURE S.-ressure for rectangular edge as given by Busernann and by tite approximation If, for example, the'distribution function F is a constant K,
given in equations (36).

x cot A-z

01 =05-Jl 6,d +Ef" 0,d

4~', (r - 0.) d + f(Ir -04) dt

The corresponding local pressures are

pvK A 7 1 ,+B

pvK A 1(i! +AC+co-li -C

VtlpvK A 2~an /A,- I

45 IA2 - tan- A i-C 2

f44 where
A=# cot A

/9 = -tan A

C= Z

FIGURE 0.-Sketh for swept wing for the case A>1I showing regions 1, 11, 111.

The constant K may be interpreted as va associated with

The limits in the foregoing integrals are as follows: the constant angle of attack. In this case, region II is to be

limits 0=01 and 0=0, correspond, respectively, to the leading- regarded as a mixed supersonic region and the result given

edge lines = cot A and[ 1= - cot A: 0=0 andl 0=7r is not the appropriate solution for this region. If the con-

correspond, respectively, to the Machlinhes =S2 and stant K is interpreted as g'=Constant, the results are

= e " nd d are obtained, respectively, from thie relations applicable to a thin symmetrical wedge of half vertex angle

,=cot A and , cot A; 0=02 corresponds to =S; 2 is K and may be employed to yield the wave drag according to

obtained from the relation (2 =s; , is obtained from the linearized treatment.
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Jones (reference 5) treats symnmetrical airfoils of various steady case of it vaishingly thin surface at anglc of a'
plan formis aterlitb seoprsueotna. e tievoctptetis npesreratosorr
use of velocity potentijal leads to the samre. results as griven and III are equivalent to t hose j ust discussed in thle pr
in reference 5. Th1us. eq uations (13) awl (14) of reference 5 section. The E ft AL ou at strip Ax of the triangle lo(
for at Wedge Corresp~ond to the preceding reCsults. Thle abscissa x fromt thet( vertex is given by
velocity potential ini generall is more uiseful to treat. plesslre CoA
distributions for a g-iven body; whereas, the pressure1 lpoteii- (L A cot d
tial. may be more realdily aidaptedl to treat airfoil shapes and AL= x co Aiid

p~lan forms associateil with idesired types of distributions r. 1 p~ 1  A
of pressture. =L 2 1\A+1 02 \ A I/

TRIANGULAR PLAN FORM

The triangular wing (fig. 10) extending across (,he 'Macli wren th two term corespoy nd towheA= itA.o
lines fromt tile vertex miay serve ats a fin~al example. For the einIadIIrsctvlndw reA ot.

________ ________AL= -4vAx Ax

tan-' 13The area of tile strip is 2x Ax cot A, and hience thle lift
cient is inldependlent of xr and equal to

C= AL

Gurevich (reference 9) treats this case, and his relati(
be showvn to be eqUiVallellt to tile foregoing ones. Th
sure dlistributtion is illustrated in figure 10. whore,

20 reference pressure, is 2pv
2
a/g. Observe that thle p)

A-- Of7 /3..are a above tile unit ordlinate cancels thle area of p)
deficienlcv bl)ow tile un~it ordlinate. Also shown in fit

0 is thle (distributiotn of pressure as tile hlalf vertex angle
P/ IA- ,,,triangle approachles tile Maclh angle.

/- Thle triangullar wing insidle thle Maclh cone from thle
- -- reqtuires a more elaborate treatmenlt (references 7 to

0/ 
0= -

Z/-- LANGLEY MEMORIAL AERONAUTTIcAL LABORATORY,

FiGUitz iO.-'riangziar wing in a supersonic streain a~nd pre.ssure distribution, easAINLeDIOYCMMTE O ARNUI
skeiched corresponds toA=-30', Af- vi LANGLEY FIELD, VA., June 4, 1947.
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APPENDIX A With the aid of these two relations the first term in equa-
tion (A3) becomes

DIFFERENTIAL EQUATION FOR THE VELOCITY POTENTIAL Dp 1 (,
2  d"2

A derivation of equation (4) is given briefly here. The +2t+v grad4)

condition for irrotational flow is For small perturbations from tIe main stream of velocity t

curl v=0 (Al) in the x-direction, c may be considered equal to the constant
speed of sound in the undisturbed medium and, in compari-

.1nd this relation implies that a scalar velocity potential 0 son with v, u=O(, V'=0, and V,=Iv. Then
exists, such that

v=grad 0 (A2) 1 D2 1 ,

The general equation of continuity )tl oVat 62

With this relation used in equation (A3) the equation for
P+dliv pv=0 the velocity potential may be put in the form given in equa-

may be written as tion (4) of the analysis.I D p V,2,= 0 (A 3)
p Dt

where differentiation following the particle is denoted by APPENDIX B
D 5 5
Db- +(v.urad) 

EVALUATION OF (60

and V2=div grad is the Laplacian operator. 6a
From Euler's equations, or from the general Bernoulli In order to determine the limit of -as y--->O, it is conven-

relation, ient to make use of the following substitution:
-6i- f -_P=0 (A4)

9t2- p 2 =---( '2-- I) COS 6+ '2+i (B 1)

where a space constant function of time has been included
in 0, and where it has been assumed that p is a function of adfhe express ionsforee equation (1 b t h
p only. With the use of equation (A4) and the acoustic
relation,

dp
=1 --' in

where c is the local variable speed of sound, it follows that sin 0

grad _+ _ -grad p = 0sin0
c
2 

2~ P%

Sgrad p f A(0,+ cos )(fJ+ 2 )dOd (B2)

and whereb (b¢ V") I bp .f=1t-r)f 1 (x-O 0 sin 0
Y -b-t ) Pt- f==J(t- f)=J t- -i)+ sin )O

C
2 

Op M(x) sin)

f2 =f t - 2 = 2c
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By the rule for differentiation of a definite integral, REFERENCES
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IV

Positive directions of axes and angles (forces and moments) are shown by arrows

Axis Moment about axis Angle Velocities

-- Force
- - ____ _____ ____________ (parallel ___ _ __ icr __

0_ tcaxis 8 Positive Dlesigna- - v- V omoDesignation bol- symbol Designation 91 direction tion bo n11j, g Angular
axis),

Longitudinal.-----X X Rolling ----- L .Z Roll ------ 0 U p
Lateral- -------- -y .itching-:,- -. X_ Pitch.-----0 V q,
Normal ------------ Z z Z Yawing- --- Y Yaw. - - , w r

Absolute coefficients of moment Angle of set of control surface (relative to neutral

C L C.M C.NI position), 3. (Indi cate surface by proper subscript.)

(rolling) (Pthn) yaig

4PROPELLER SYMBOLS

D Diameter p
p Geometric pitch P Power, absolute coefficient Cp=---i-
plD Pitch ratio , Sedpwrcfiint
V' Inflow velocity . Sedp eroefict
V8  Slipstream velocity 7 Efcey

T Thrust, absolute coefficient Cr= Tn Revolutions per second, rps

Q Torque, absolute coefficient C _2= _Q Effective helix angl=-tan -

5. NUMERICAL RELATIONS

1, hp=76.04 kg-m/s=550 ft-lb/sec 1 lb=O.4536 kg
1 metric liorsepower=O.9863 hp 1 kg= 2.2O46 lb
1 mph=O.4470 mps 1 mi' 1,6O9.35 m=5,280 ft
I mps=2.2369 mph 1 m=3.2808 ft
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